Introduction

- The Standard Model describes all basic particles and the basic forces, electroweak and strong.
Quantum Chromodynamics (QCD) describes how particles behave under the strong force
- "Chromo" stands for the color charge ($R G B$) that the quarks and gluons carry - Only quarks and gluons interact via the Only quarks
strong force
- The strong force is the force that holds The strong force is the force that
together particles such as pions, together particles such
protons, and neutrons
Our simulation only includes 2+1
Our simulation only includes $\mathbf{2 + 1}$
quarks, the up (u), down (d), and quarks, the
strange (s)

Couank Leptons bosons higas boson
Figure 1. Particles in the Standard Model. Strong
force particles are unshaded (does not include force particles are unshaded (does not include Higgs boson) [1].
$N \pi$ Scattering: A Delta Resonance
Our results focus on nucleon-pion scattering where the nucleon can be a proton or neutron. We look at all interactions where
$N \pi \longrightarrow N \pi$
Different variations of this interaction are called channels. One such channel contains a delta resonance, where a delta particle is created and then decays back into a nucleon pion pair.

Figure 2. Proton (p) and pion (π) scattering with a delta (Δ) resonance example.

Simple Harmonic Oscillator Toy Model

To demonstrate the methodology to calculate the energy spectrum from first principles physics, we will begin with a toy model: a 1D simple harmonic oscillator (SHO). An SHO example: think of the movement of a pendulum viewed from above.

First principle physics: Lagrangian of SHO:

$$
\begin{equation*}
L=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2} \tag{1}
\end{equation*}
$$

where x is the position of mass $m, \dot{x}=\frac{d x}{d x}$, and ω is the angular frequency. A Lagrangian describes the dynamics of the system using the energies, $L=$ kinetic energy - potential energy. t is time.

References

${ }^{1}$ The standard model of particle physics, https ://www. symmetrymagazine . org/standard-model/. G. S. Bali, E. E. Scholz, J. Simeth, and W. Söldner (RQCD), "Lattice simulations with $N_{f}=2+1$ improve Wilson fermions at a fixed strange quark mass", Phys. Rev. D94, 074501 (2016).
M. Bruno et al., "Simulation of QCD with $\mathrm{N}_{f}=2+1$ flavors of non-perturbatively improved Wilson
fermions" JHEP $02,043(2015)$. fermions", JHEP 02, 043 (2015).
Juqueen, https ://web. archive. org/ web / $20190118115058 / \mathrm{https}: / / /$ www . fz- juelich . de/i ias sc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node . html.
Texas advanced computing center, https: //www. tacc. utexas . edu/systems/frontera.
C. Morningstar, J. Bulava, B. Fahy, J. Foley, Y. C. Jhang, K. J. Juge, D.
tended hadron and two-hadron operators of definite momentum for spectrum calculations in lattic QCD", Physical Review D 88, 10.1103/physrevd. 88.014511 (2013).

SHO Energy Spectrum from Monte Carlo

In classical mechanics, there is one path from point $\left(x_{a}, t_{a}\right)$ to $\left(x_{b}, t_{b}\right)$, but for quantum mechanics, a particle can take any path. $\left(x_{b}, t_{b}\right)$, but for quantum mechanics, a particle can take any p
In Monte Carlo, we use random numbers to simulate these possible paths.

The quantum mechanics for a system can be characterized by the transition amplitude that determines the probability that starts at
 point $\left(x_{a}, t_{a}\right)$ and ends at $\left(x_{b}, t_{b}\right)$ by inte
paths with phase amplitude $\exp (i S / \hbar)$

$$
Z(b, a)=\int_{a}^{b} \mathcal{D} x e^{i S / \hbar} \xrightarrow{t \rightarrow-i \tau} \int_{a}^{b} \mathcal{D} x e^{-S / \hbar}
$$

where S is the action $S=\int_{t_{a}}^{t_{b}} L d t$. Under a Wick rotation of time $(t \rightarrow-i \tau)$, this phase turns into a weight, i.e. each path has a probability $\exp (-S / \hbar)$ to occur. To see how different paths contribute to the transition probability, several paths are mapped out on a lattice in the τ domain in Figure 3.

Figure 3. A few paths and their contribution to the transition amplitude. Available at qrd.by/sho.
To capture the quantum physics, we want to generate paths that are primarily in the peak of the transition amplitude, so we use the Metropolis-Hastings method to choose the paths/configurations. A few configurations are shown out in Figure 4.

Figure 4. Configurations computed using the Metropolis-Hastings method. Available at ard.by/sho.
Using these configurations, we can calculate correlation functions, $\left\langle\phi_{0}\right| x(\tau) x(0)\left|\phi_{0}\right\rangle$. These correlations functions can be related to the energies E_{n} of the system using spectral analysis with overlap amplitude A_{n}.

$$
\begin{equation*}
\left\langle\phi_{0}\right| x(\tau) x(0)\left|\phi_{0}\right\rangle=\sum_{n=0}^{\infty} A_{n}^{2} \exp \left(\frac{-\left(E_{n}-E_{0}\right) \tau}{\hbar}\right) \tag{3}
\end{equation*}
$$

Using this relation, we can fit to the lowest lying energy spectrum.

Figure 5. Several fitted correlation functions produced from SHO Example repository (qrd.by/sho). The fit results are compared to analytical calculations. $\hbar=c=$

Lattice QCD

QCD Lagrangian density ($L=\int d^{3} x \mathcal{L}$):

$$
\begin{aligned}
\mathcal{L}[\psi, \bar{\psi}, \mathcal{A}] & =\sum_{f=1}^{N_{f}} \bar{\psi}_{a \alpha}^{(f)}\left(i \gamma_{\alpha \beta}^{\mu} \mathcal{D}_{\mu a b}-m^{(f)} \delta_{\alpha \beta} \delta_{a b}\right) \psi_{a \alpha}^{(f)}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}, \\
\mathcal{D}_{\mu} & =\partial_{\mu}+i g \mathcal{A}_{\mu} ; G_{\mu \nu}=-\frac{i}{g}\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right] ; \mathcal{A}_{\mu}=\mathcal{A}_{\mu}^{a} \frac{\lambda_{a}}{2}
\end{aligned}
$$

" $\psi, \bar{\psi}$ - fermionic quark fields, Dirac $\quad g$-coupling strength spinors with mass m and flavor f

- \mathcal{A}_{μ} - gluon fields, non-abelian, SU(3) symmetry described by Gell-Mann matrices λ
- γ^{μ} - Dirac gamma matrices
fermionic color indices $a, b=1,2,3$ - gluonic color indices $a=1,2, \ldots 8$ - Dirac indices $\alpha, \beta=1,2,3,4$ - Minkowski space-time indices $\mu, \nu=1,2,3,4-\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$

Changes from SHO to QCD

QCD is 4D-3 spacial dimensions and 1 time dimension

- QCD is a gauge theory, adds constraints to the degrees of freedom
- for every flavor of quark there are 2 corresponding 12 -vector fields $\psi, \bar{\psi}$ - there are 8 gluon fields

To retrieve the energy spectrum, we use hadronic annihilation operators in our timeordered 2-point correlator in natural units $(\hbar=c=1)$;

$$
\begin{equation*}
C_{i j}(t)=\langle 0| T \mathcal{O}_{i}\left(t+t_{0}\right) \overline{\mathcal{O}}_{j}\left(t_{0}\right)|0\rangle=\sum_{n}\langle 0| \mathcal{O}_{i}|n\rangle\langle n| \overline{\mathcal{O}_{j}}|0\rangle e^{-\left(E_{n}-E_{0}\right) t} \tag{6}
\end{equation*}
$$

where hadronic operators can represent the individual particles N, π, or the combined $N \pi$ system.

Results and Conclusions: $N \pi$ Energy Spectrum

Parameters of the D200 ensemble produced by the Coordinated Lattice Simulation Group can be found in Refs. [2, 3]. Configurations were calculated on JUQUEEN [4], and correlators on Frontera [5]. openQCD was used for many calculations [6].

Figure 6. Top: $I=1 / 2$. Bottom $I=3 / 2$. The notation along the horizontal axis is $\Lambda\left(\mathbf{P}^{2}\right)$, where \mathbf{P}^{2} is the total momentum squared and Λ is the irrep of little group $\mathbf{P}[7]$. Dashed lines indicate the limits of the elastic region. Solid lines and shaded regions indicate the non-interacting levels and their errors.
The $N \pi$ channels that we study here are also known as the roper and delta resonance channels. We can see evidence of resonances when the energy spectrum differs from the non-interacting spectrum. Though we don't see this behavior in the $I=1 / 2$ channel, we do see evidence of delta resonance in $I=3 / 2$ channel. Using this data, we can investigate the delta resonance, which is needed information for the Deep Underground Neutrino Experiment (www.dunescience.org)

