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Introduction

The Standard Model describes all basic

particles and the basic forces,

electroweak and strong.

Quantum Chromodynamics (QCD)

describes how particles behave under

the strong force

“Chromo” stands for the color charge

(RGB) that the quarks and gluons carry

Only quarks and gluons interact via the

strong force

The strong force is the force that holds

together particles such as pions,

protons, and neutrons

Our simulation only includes 2+1

quarks, the up (u), down (d), and

strange (s)

Figure 1. Particles in the Standard Model. Strong

force particles are unshaded (does not include

Higgs boson) [1].

Nπ Scattering: A Delta Resonance

Our results focus on nucleon-pion scattering where the nucleon can be a proton or

neutron. We look at all interactions where

N π −→ N π

Different variations of this interaction are called channels. One such channel con-

tains a delta resonance, where a delta particle is created and then decays back into a

nucleon pion pair.
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Figure 2. Proton (p) and pion (π) scattering with a delta (∆) resonance example.

Simple Harmonic Oscillator ToyModel

To demonstrate the methodology to calculate the energy spectrum from first princi-

ples physics, we will begin with a toy model: a 1D simple harmonic oscillator (SHO).

An SHO example: think of the movement of a pendulum viewed from above.

First principle physics: Lagrangian of SHO:

L = 1
2
mẋ2 − 1

2
mω2x2 (1)

where x is the position of mass m, ẋ = dx
dt , and ω is the angular frequency.

A Lagrangian describes the dynamics of the system using the energies, L =
kinetic energy− potential energy. t is time.
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SHO Energy Spectrum from Monte Carlo

In classical mechanics, there is one path from point (xa, ta) to
(xb, tb), but for quantum mechanics, a particle can take any path.
In Monte Carlo, we use random numbers to simulate these

possible paths.

The quantum mechanics for a system can be characterized by the

transition amplitude that determines the probability that starts at

point (xa, ta) and ends at (xb, tb) by integrating over all possible
paths with phase amplitude exp(iS/~)

Z(b, a) =
∫ b

a
Dx eiS/~ t→−iτ−−−−→

∫ b

a
Dx e−S/~ (2)

where S is the action S =
∫ tb
ta
L dt. Under a Wick rotation of time (t → −iτ ), this

phase turns into a weight, i.e. each path has a probability exp(−S/~) to occur. To see
howdifferent paths contribute to the transition probability, several paths are mapped

out on a lattice in the τ domain in Figure 3.

Figure 3. A few paths and their contribution to the transition amplitude. Available at qrd.by/sho.

To capture the quantum physics, we want to generate paths that are primarily in

the peak of the transition amplitude, so we use the Metropolis-Hastings method to

choose the paths/configurations. A few configurations are shown out in Figure 4.

Figure 4. Configurations computed using the Metropolis-Hastings method. Available at qrd.by/sho.

Using these configurations, we can calculate correlation functions, 〈φ0|x(τ )x(0)|φ0〉.
These correlations functions can be related to the energies En of the system using
spectral analysis with overlap amplitude An.

〈φ0|x(τ )x(0)|φ0〉 =
∞∑
n=0

A2
nexp(−(En − E0)τ

~
) (3)

Using this relation, we can fit to the lowest lying energy spectrum.

Figure 5. Several fitted correlation functions produced from SHO Example repository (qrd.by/sho).

The fit results are compared to analytical calculations. ~ = c = 1

Lattice QCD

QCD Lagrangian density (L =
∫
d3x L):

L[ψ, ψ,A] =
Nf∑
f=1

ψ
(f )
aα (iγµαβDµab −m(f )δαβδab)ψ

(f )
aα − 1

4
GaµνG

µν
a , (4)

Dµ = ∂µ + igAµ; Gµν = − i

g
[Dµ,Dν]; Aµ = Aa

µ
λa
2

(5)

ψ, ψ – fermionic quark fields , Dirac
spinors with massm and flavor f

Aµ – gluon fields , non-abelian, SU(3)

symmetry described by Gell-Mann

matrices λ

γµ – Dirac gamma matrices

g – coupling strength

fermionic color indices a, b = 1, 2, 3
gluonic color indices a = 1, 2, ...8
Dirac indices α, β = 1, 2, 3, 4
Minkowski space-time indices

µ, ν = 1, 2, 3, 4 – x,y,z,t

Changes from SHO to QCD:

QCD is 4D - 3 spacial dimensions and 1 time dimension

QCD is a gauge theory, adds constraints to the degrees of freedom

for every flavor of quark there are 2 corresponding 12-vector fields ψ, ψ

there are 8 gluon fields

To retrieve the energy spectrum, we use hadronic annihilation operators in our time-

ordered 2-point correlator in natural units (~ = c = 1):
Cij(t) = 〈0|TOi(t + t0)Oj(t0)|0〉 =

∑
n

〈0|Oi|n〉〈n|Oj|0〉e−(En−E0)t (6)

where hadronic operators can represent the individual particlesN ,π, or the combined
Nπ system.

Results and Conclusions: Nπ Energy Spectrum

Parameters of the D200 ensemble produced by the Coordinated Lattice Simulation

Group can be found in Refs. [2, 3]. Configurations were calculated on JUQUEEN [4],

and correlators on Frontera [5]. openQCDwas used for many calculations [6].
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Figure 6. Top: I = 1/2. Bottom I = 3/2. The notation along the horizontal axis is Λ(P2), where P2
is

the total momentum squared and Λ is the irrep of little group P [7]. Dashed lines indicate the limits of
the elastic region. Solid lines and shaded regions indicate the non-interacting levels and their errors.

TheNπ channels that we study here are also known as the roper and delta resonance
channels. We can see evidence of resonanceswhen the energy spectrum differs from

the non-interacting spectrum. Though we don’t see this behavior in the I = 1/2
channel, we do see evidence of delta resonance in I = 3/2 channel. Using this data,
we can investigate the delta resonance, which is needed information for the Deep

Underground Neutrino Experiment (www.dunescience.org).
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